Меню

Точечное раздражение вентромедиального ядра гипоталамуса вызывает



Точечное раздражение вентромедиального ядра гипоталамуса вызывает

Высшим интеграционным и организационным центром всех вегетативных функций является гипоталамус. Хотя в нем не имеется точечных, четко очерченных центров, установлено, что стимуляция переднего отдела гипоталамуса вызывает вегетативные реакции, связанные с активацией парасимпатической нервной системы (снижение артериального давления, брадикардия, урежение дыхания и т. д.).

Раздражение заднего отдела гипоталамуса приводит к повышению тонуса симпатической нервной системы и появлению соответствующих вегетативных реакций — увеличения кровяного давления, тахикардии, учащения дыхания (рис. 97).

Гипоталамус является не только центром вегетативной нервной системы, но и функционирует как эндокринный орган. Показано, что нейросекреторные клетки гипоталамуса продуцируют гормоны (рилизинг-факторы), которые стимулируют (либерины) или ингибируют (статины) образование в гипофизе АКТГ, СТГ, тиреотропина, фолликулостимулирующего гормона, лютеинизирующего гормона, лактотропного гормона и меланоцитотропного гормона. Если к тому же учесть, что гормоны окситоцин и вазопрессин (антидиуретический гормон) образуются в нейросекреторных ядрах переднего гипоталамуса и затем депонируются в задней доле гипофиза, следует рассматривать систему гипоталамус — гипофиз как единый эндокринный комплекс. Поэтому патологические процессы, возникающие в результате повреждения различных отделов гипоталамуса и гипофиза, нужно анализировать с точки зрения нарушения деятельности этого важнейшего эндокринного аппарата.

При поражениях (травмы, опухоли, кровоизлияния и др.) в области вегетативных ядер гипоталамуса возникают различные вегетативные нарушения в зависимости от локализации повреждения.

Повреждение ядер переднего гипоталамуса вызывает нарушение углеводного обмена. Развивается активация перехода гликогена в сахар, увеличение содержания сахара в крови и состояние типа транзиторной формы сахарного диабета. Повреждение надоптического ядра переднего гипоталамуса сопровождается нарушением гипоталамо-гипофизарных связей с задним гипофизом. Уменьшается секреция антидиуретического гормона. Вследствие этого возникает увеличение мочеотделения — полиурия. При обезвоживании организма нейросекреция этих ядер гипоталамуса увеличивается. Это вызывает повышение секреции АКТГ и альдостерона. Увеличивается реабсорбция воды в канальцах. Сокращается мочеотделение.

Разрушение заднего и среднего гипоталамуса тормозит секрецию кортикостероидов. Электрическое раздражение ядер заднего гипоталамуса (вживление электродов) увеличивало секрецию кортикостероидов. Раздражение задних участков серого бугра и мамиллярных тел также вызывало секрецию кортикостероидов и лимфопению.

Повреждение клеток ядер среднего гипоталамуса вызывает расстройство вегетативной иннервации слюнных желез парасимпатической природы и сопровождается усиленным слюноотделением. В среднем гипоталамусе располагаются также области, повреждения которых влияют на теплорегуляцию.

Повреждение области вентромедиальных ядер приводит к нарушению жирового обмена. Возникает резкое ожирение вследствие полифагии и торможения процессов окисления жиров. Повреждение ядер заднего гипоталамуса, по некоторым данным, вызывает торможение синтеза белков крови. Особое значение имеет влияние повреждения этого отдела гипоталамуса (латеральное гипоталамическое ядро и туберомамиллярные ядра) на минеральный обмен. Повреждение этих, а также ядер среднего отдела гипоталамуса (вентромедиальное, дорсомедиальное, инфундибулярное ядра и др.) вызывает изменение минерального обмена.

Увеличивается выделение натрия с мочой. Этот эффект реализуется через уменьшение действия нейросекретов указанных выше отделов гипоталамуса на клетки передней доли гипофиза. Возникает угнетение секреции адренокортикотропного гормона гипофиза и альдестерона коры надпочечников, который, как известно, задерживает выделение натрия из организма.

Гипоталамус может влиять на деятельность желудочно-кишечного тракта. Так, например, раздражение переднего отдела гипоталамуса вызывает усиление перистальтики кишечника, а раздражение задней области гипоталамуса — ее угнетение. Было отмечено, что поражение гипоталамуса на уровне серого бугра вызывало у обезьян кровоизлияния в желудок, пептическую язву и прободение желудка.

Отделение гипоталамуса от гипофиза вызывает атрофию щитовидной железы. В свою очередь удаление щитовидной железы тормозит нейросекрецию ядер переднего гипоталамуса. Таким образом, здесь имеется обратная связь в виде взаимной регуляции функций щитовидной железы и гипоталамуса.

Разрушение парасимпатических (латеральных) ядер гипоталамуса у крыс приводит к раннему аборту, а в конце беременности вызывает преждевременные роды. Стимуляция или разрушение симпатических (вентромедиальных) ядер у кошек и крыс не влияло на течение беременности. Разрушение вентромедиальных ядер существенно отражается на овариально-менструальном цикле. У животных прекращается течка, увеличивается вес матки, исчезают желтые тела в яичнике. Эти изменения сопровождаются ожирением.

§ 366. Повреждение симпатической иннервации

Экспериментально в несколько приемов можно удалить все узлы симпатической цепочки и паравертебральные узлы у кошки и изучить жизнедеятельность такого животного. Указанная операция называется полной десимпатизацией. Напомним, что удаление симпатической цепочки, т. в. всех узлов, пограничных позвоночному столбу, нарушает сосудодвигательную и трофическую иннервацию многих органов. В результате наблюдается выпадение многих функций, среди которых особое значение имеет влияние десимпатизации на кровообращение, обмен веществ, деятельность гладкомышечных органов и пр. Влияние десимпатизации на кровообращение сказывается в выпадении сосудосуживающего действия на артериолы многих областей тела симпатической иннервации. Происходит расширение артериол и падает артериальное давление. Выключение симпатической иннервации сердца (усиливающий нерв Павлова и другие нервы) приводит к ослаблению и замедлению сердечных сокращений. Эти эффекты, однако, могут компенсироваться за счет рефлекса с барорецепторов кровеносных сосудов, вызванного падением артериального давления. Ослабление раздражения барорецепторов, вызванное падением кровяного давления, уменьшает поток импульсов по чувствительным волокнам к центру сердечных ветвей блуждающего нерва.

Читайте также:  Раздражение глаза от удара

Уменьшение рефлекторных раздражений сердечных центров блуждающего нерва вызывает снижение их тонического возбуждения. Это обусловливает уменьшение тонического влияния блуждающего нерва на сердце, сердце выходит из-под его влияния (феномен «ускользания») и развивается тахикардия.

Влияние десимпатизации на гладкомышечные органы выражается в выпадении действия симпатической иннервации на функцию того или иного органа. Например, удаление верхнего шейного симпатического узла у кролика или кошки сопровождается сужением зрачка (выпадение расширяющего зрачок влияния симпатического нерва) и расширением артерий уха вследствие выпадения сосудосуживающего влияния симпатического нерва.

Выпадение влияния симпатической нервной системы на желудочно-кишечный тракт сопровождается активацией двигательной функции желудка и особенно кишечника, так как симпатическая иннервация угнетает движения желудка и кишечника.

Симпатическая иннервация гладкомышечных сфинктеров мочевого пузыря и заднего прохода обеспечивает расслабление этих сфинктеров, а выпадение симпатической иннервации способствует их спастическому сокращению. Таково же отношение симпатической иннервации к сфинктеру Одди, регулирующему поступление желчи из желчного пузыря.

Десимпатизация вызывает угнетение окислительных процессов, падение температуры тела животного, гипогликемию, лимфопению и нейтрофильный лейкоцитоз. Возникает уменьшение содержания кальция и увеличение содержания калия, в крови.

Понятно, что при явлениях раздражения симпатической нервной системы все указанные изменения обмена веществ и функций гладкомышечных органов происходят в направлении, противоположном описанному.

§ 367. Повреждение парасимпатической иннервации

Нарушения парасимпатической иннервации могут возникнуть вследствие:

  1. повышения возбудимости и возбуждения парасимпатического отдела вегетативной нервной системы;
  2. угнетения или выпадения парасимпатической иннервации органов.

Возможны также извращения функций парасимпатической системы. Они называются амфатонией или дистонией.

Повышение возбудимости парасимпатической нервной системы. Повышение возбудимости парасимпатической нервной системы может возникнуть на фоне наследственно-конституционных влияний в виде так называемой ваготонии. В качестве примера подобного состояния можно указать на тимико-лимфатическое состояние — увеличение зобной железы и лимфатических узлов, при котором даже слабые раздражения блуждающего нерва, например электрическим током или механические (удар в подложечную область), могут вызвать моментальную смерть от остановки сердца (вагусная смерть). Это состояние чаще является выражением общего вегетативного невроза, при котором одновременно с повышением возбудимости парасимпатического отдела вегетативной нервной системы увеличивается возбудимость ее симпатического отдела.

Раздражения парасимпатических (блуждающих) нервов могут возникнуть вследствие: а) раздражения центра вагуса в продолговатом мозге механически при повышении внутричерепного давления (травмы и опухоли мозга); б) раздражения окончаний блужающего нерва в сердце и других органах, например, желчными кислотами при механической желтухе. Отсюда возникают брадикардия, усиление перистальтики кишечника (понос) и другие проявления раздражений блужающего нерва.

Возбудимость парасимпатического отдела вегетативной системы повышается под влиянием веществ, усиливающих (потенцирующих) действие медиатора парасимпатической нервной системы — ацетилхолина. К ним относятся ионы калия, витамин В1 препараты из поджелудочной железы (ваготонин), холин, некоторые инфекционные агенты: вирусы гриппа, бактерии кишечно-тифозной группы, некоторые аллергены.

Повышение возбудимости и возбуждение парасимпатической нервной системы и специально блуждающего нерва может возникнуть под влиянием веществ, угнетающих (ингибирующих) холинэстеразу. К ним относятся многие фосфорорганические соединения (тетраэтилфлюэрофосфат, тетраэтилпирофосфат и многие другие соединения этого ряда). Вещества этого типа известны также как «нервные яды», применяемые империалистами как средства химической войны. Отравление этими веществами вызывает накопление в организме ацетилхолина и смерть от избытка этого вещества. Накопление ацетилхолина в организме является также причиной отравления тетраэтилсвинцом (детонатор в двигателях внутреннего сгорания), а также марганцем.

Угнетение или выпадение парасимпатической иннервации. Угнетение или выпадение парасимпатической иннервации возникает в эксперименте у животных после удаления большей части поджелудочной железы. У таких животных резко ослабляется отрицательное хронотропное и инотропное влияние вагуса на сердце. Резко снижается синтез медиатора парасимпатической нервной системы — ацетилхолина.

Перерезка одного, а в особенности двух блуждающих нервов на шее у животных (собаки, кролики) и у человека является очень тяжелой операцией. Ваготомированные животные обычно погибают в сроки от нескольких дней до нескольких месяцев после операции. Двусторонняя ваготомия вызывает смерть значительно раньше.

Известно, что в стволах блуждающих нервов проходит до 300 различных нервных волокон в каждом. Перерезка блуждающего нерва вызывает следующие явления:

  1. расстройства дыхательных движений вследствие перерыва путей рефлексов с легких на дыхательный центр (рефлекса Геринга и Брейера). Дыхательные движения становятся редкими и глубокими;
  2. паралич мышцы, закрывающий вход в гортань при глотании. Это вызывает забрасывание пищи в гортань и легкие, способствуя развитию аспирационной пневмонии;
  3. гиперемию и отек легких вследствие паралича сосудосуживающих нервов в легких. Это также способствует развитию пневмонии («вагусная пневмония»);
  4. расстройства пищеварения вследствие торможения секреции желудочного и поджелудочного сока. Наибольшие сроки выживания ваготомированных животных были получены И. П. Павловым при специальном кормлении их через желудочную фистулу легкоусвояемой пищей.
Читайте также:  Кашель вызванный раздражением горла

Нарушения парасимпатической иннервации сердца вызываются также бактериальными токсинами (ботулинический, дифтерийный) и антигенами бактерий кишечно-тифозной группы.

Нарушения крестцового парасимпатикуса (S2-S4) тазового нерва возникают при травмах или опухолях этого отдела спинного мозга или тазового нерва. Возникают расстройства мочевыделения (опорожнения мочевого пузыря), дефекации, функций половых органов.

§ 368. Вегетативные неврозы

Эти весьма распространенные расстройства вегетативной иннервации чаще всего распространяются на оба отдела вегетативной нервной системы. Они заключаются в резком и длительном повышении возбудимости вегетативной нервной системы. Это выражается в расстройствах частоты и ритма деятельности сердца, нарушениях тонуса кровеносных сосудов («сосудистая дистония», «сосудистые кризы»), усиленном потоотделении или, наоборот, сухости кожи, явлениях белого или красного дермографизма, нарушениях пищеварения (диспепсия, поносы, запоры) и др. Прежнее деление вегетативных неврозов на «симпатикотонию» и «ваготонию» в настоящее время оставлено, так как обычно нарушения происходят в обоих отделах вегетативной нервной системы.

Источник

Точечное раздражение вентромедиального ядра гипоталамуса вызывает

Развитие гипоталамуса происходит вместе с лимбической системой, функция которой — сохранение индивидуума и всего вида. Из этого следует, что гипоталамус должен осуществлять значительное влияние на базовые стратегии выживания, включая воспроизведение потомства, рост и метаболизм, прием пищи и воды, реакцию «борьбы или бегства», терморегуляцию, цикл сон-бодрствование и некоторые аспекты памяти.

Основная часть функций реализуется через контроль деятельности гипофиза и обоих отделов автономной нервной системы.

Гипоталамус прилежит к боковым стенкам и дну третьего желудочка. Это парное двустороннее образование. Несмотря на малый размер (его вес около 4 г), он имеет большое значение в регуляции гомеостаза и выживании. К функциям поддержки гомеостаза относят контроль температуры тела и кровообращения. К функциям выживания относят регуляцию приема пищи и жидкости, регуляцию цикла сон-бодрствование, сексуальное поведение и защитные механизмы при нападении.

ипоталамические ядра и гипофиз, вид с латеральной стороны.
ДМЯ—дорсомедиальное ядро; ДЯ—дорсальное ядро; СТ—сосцевидное тело; ЗЯ—заднее ядро;
ПаВЯ—паравен-трикулярное ядро; ССЯ—серобугорно-сосцевидное ядро; ВМЯ — вентромедиальное ядро.
Латеральное гипоталамическое ядро показано розовым цветом.

а) Границы. Гипоталамус имеет следующие границы:
• Верхняя: гипоталамическая борозда, отделяющая его от таламуса.
• Нижняя: зрительный перекрест, серый бугор и сосцевидные тела. Серый бугор представляет собой небольшое возвышение — срединное возвышение непосредственно позади воронки гипоталамуса, расположенной над воронкой гипофиза.
• Передняя: терминальная пластинка.
• Задняя: покрышка среднего мозга.
• Медиальная: третий желудочек.
• Латеральная: внутренняя капсула.

б) Отделы и ядра гипоталамуса. В сагиттальной плоскости гипоталамус обычно разделяют на три области: переднюю (супраоптическую), среднюю (бугорную) и заднюю (сосцевидную). Эти отделы имеют небольшие размеры даже у крупных млекопитающих, и описательное использование этих областей удобно лишь при экспериментах на животных, заключающихся в разрушении тех или иных отделов, и часто находят применение в клинических условиях у людей. Ядра этих трех отделов перечислены в таблице ниже.

Во фронтальной плоскости гипоталамус разделен на латеральную, медиальную и околожелудочковую области. Латеральное гипоталамическое ядро занимает всю латеральную область. С латеральным ядром срастается медиальный пучок переднего мозга, в котором проходят аминергические волокна к гипоталамусу и коре больших полушарий.

Ядра гипоталамуса и связанные с ними проводящие пути, фронтальная плоскость.
ДОЯ—дугообразное ядро; ДМЯ — дорсомедиальное ядро; ЛЯ—латеральное ядро;
МППМ — медиальный пучок переднего мозга; ПаВЯ—паравентрикулярное ядро; ПеВЯ—перивентрикулярное ядро;
ВМЯ—вентромедиальное ядро; НЗ—неопределенная зона.

Редактор: Искандер Милевски. Дата публикации: 21.11.2018

Источник

Нейронауки для всех. Детали: ядра гипоталамуса

Структура мозга настолько сложна и состоит из такого большого числа компонентов, что порой небольшие группы находящихся рядом нейронов могут иметь разные функции. Так и с ядрами гипоталамуса, о некоторых из которых мы уже упоминали. Но мы говорили вскользь, а хотелось бы рассказать немного подробнее, чтобы дать общее представление об их расположении, многочисленности и разнообразии функций. И ещё раз убедиться в том, насколько сложна регуляция всего организма.

Под таламусом

Илл: Wikimedia Commons

Гипоталамус располагается в промежуточном мозге аккурат под таламусом, от того и название «гипоталамус». А снизу он граничит с гипофизом.

По размеру гипоталамус можно сравнить с фалангой большого пальца руки, он весит всего 4-5 г. Сам регион мал, но подотчётных ему и координируемых им систем организма – очень много. По-другому эту область ещё называют «мозгом вегетативной жизни», потому что она ответственна за поддержание гомеостаза организма и его эндокринную (гормональную) регуляцию.

В гипоталамусе есть группы нейронов, называемые ядрами, большинство из которых парные. Более того, среди некоторых ядер можно выделить так называемые подъядра (subnuclei).

Илл: Wikimedia Commons

Ядерное многообразие

Илл: Wikimedia Commons

Ядер в гипоталамусе насчитывается свыше 30 штук, они имеют мощное кровоснабжение и выполняют разные функции. Мы расскажем только про некоторые из них. Но сразу нужно оговориться – ещё не все функции ядер гипоталамуса исследованы, и мы говорим о том, что известно на сегодняшний момент.

Читайте также:  Раздражение кожи при расчесывания

Преоптическая зона (на рисунке обозначена PO) расположена в передней части гипоталамуса. Она отвечает за терморегуляцию – получает сигналы от терморецепторов кожи, слизистых и самого гипоталамуса. Также в ней находится половое диморфное ядро, которое, как считают специалисты, связанно с сексуальным поведением у животных.

Супраоптическое ядро (на рисунке SO) у человека содержит в себе около 3 000 нейронов. Они синтезируют гормон вазопрессин, который по кровотоку достигает сосочковых протоков почек и повышает реабсорбцию (обратное всасывание) воды.

В биологии есть свои модельные объекты – животные – на которых ставятся почти все эксперименты ввиду их удобства. Это мыши, кролики, плодовые мушки дрозофилы, растение арабидопсис, кишечная палочка. А в нейронауках в качестве «модели» используется супрароптическое ядро. Оно удобно, так как состоит из достаточно больших по размеру клеток, с которыми можно легко проводить различные манипуляции. Также по клеточному составу ядро достаточно однородно, и можно без труда отделить его от других участков мозга.

Паравентрикулярное ядро (на рисунке PV) содержит в себе группы нейронов, которые активируются при стрессе или каких-либо физиологических изменениях в организме. Нервные клетки этого ядра играют жизненно важную роль во многих процессах, например, в контроле стресса, метаболизма, роста, занимаются «слежкой» за репродуктивной и иммунной системами. К примеру, они выделяют такие гормоны как окситоцин, вазопрессин, соматостатин. А анатомическую структуру ядра описали ещё в начале 80-х годов прошлого века.

Супрахиазматическое ядро (на рисунке SC) – главный механизм, отвечающий за циркадные ритмы. Активность нервных клеток, находящихся в нём, изменяется в течение суток и регулируется окружающими условиями, например, продолжительностью светового дня. В норме у человека циркадные ритмы синхронизированы с 24 часовым циклом день-ночь, а при искусственном разрушении этого ядра ритмы утрачиваются. Интересно, что цикла в 24 часа нейроны достигают сообща, а для каждого нейрона по отдельности он может длиться от 20 до 28 часов (это показано в экспериментах на крысах).

Латеральный гипоталамус (на рисунке LT) очень важен для питания и приёма пищи. В экспериментах, когда искусственно стимулировали эту область электрическими импульсами, животные начинали есть и пить, даже будучи сытыми, а при разрушении ядер они отказывались от приёма пищи совсем. Здесь расположены нейроны, регулирующие температуру тела, пищеварение, давление, уменьшающие восприятие боли. Именно в латеральном гипоталамусе находятся клетки, синтезирующие орексины, которые поддерживают бодрствование и влияют на метаболизм.

Правильная работа вентромедиального ядра (на рисунке обозначено VM) определяет чувство насыщения, регуляцию энергетического обмена, контроль потребления пищи, а также нейроэндокринный контроль. Повреждение вентромедиальных ядер у мышей приводит к грубым сдвигам в обмене веществ.

Дорсомедиальное ядро гипоталамуса (на рисунке DM) представляет собой «контролирующий центр» обработки информации, которая поступает от вентромедиального ядра и латерального гипоталамуса. Оно обеспечивает регуляцию кровяного давления, сердцебиения, пищеварения. В экспериментах на крысах определили, что поражение нейронов в этом ядре приводит к снижению двигательной активности, помимо этого хуже происходит терморегуляция. Дорсомедиальное ядро, как и супрахиазматическое, регулирует циркадные ритмы.

Центральная роль аркуатного ядра (на рисунке AR) – поддержание гомеостаза организма. Оно так же, как другие, участвует в регуляции питания, метаболизма, контроле за сердечно-сосудистой системой. Особенно важно аркуатное ядро в воздействии на аппетит, потому как в нём секретируется нейропептид Y и агути-подобный пептид (agouti-related peptide). Именно там располагаются дофаминергические нейроны, которые регулируют секрецию гормона пролактина, выделяемого гипофизом. Другие нервные клетки вырабатывают соматостатин, который подавляет секрецию гипоталамусом соматотрипин-рилизинг-гормона или соматолиберина (стимулирует в гипофизе синтез и выделение соматотропного гормона, который отвечает за рост организма).

Маммилярное тело, маммилярное ядро или сосцевидные тела (на рисунке MB) располагаются в основании гипоталамуса, и учёные считают, что их правильное функционирование влияет на поддержание памяти. При дефиците тиамина (витамина B1) развивается синдром Гайе-Вернике – алкогольная энцефалопатия, которая проявляется нарушениями в сознании, движениях и параличом глазных мышц.

Туберомаммилярное ядро располагается в задней трети гипоталамуса. Состоит из гистаминергических нейронов и вовлечено в контроль пробуждения, обучения, запоминания, сна и обменных процессов в организме. Нервные клетки этого ядра – единственный источник гистамина в мозге позвоночных.

Насчёт некоторых из перечисленных ядер существуют разногласия. Некоторые учёные считают, что их нужно выделять отдельно, тогда как настаивают на присоединении их в каким-то другим ядрам или зонам гипоталамуса. Но уже из того, о чём мы рассказали (а это далеко не все), видны разнообразие и, главное, важность функций этого маленького органа весом лишь 4-5 грамм.

Источник

Adblock
detector