Меню

Понятие сигнала как средства передачи информации

Понятие сигнала

Дата добавления: 2013-12-24 ; просмотров: 1675 ; Нарушение авторских прав

Краткая характеристика основных элементов телекоммуникационных сетей. Любая система электросвязи как базовая составляющая телекоммуникационной системы может быть представлена в виде структурной схемы, представленной на рис. 3.3.

Таким образом, функциональное объединение телекоммуникационных и информационных сетевых технологий, взаимопроникновение научных направлений каждого из них для решения задач широкомасштабного информационного обслуживания общества привело к формированию нового научного направления — инфокоммуникационные технологии, эволюция которых обусловлена дальнейшим развитием техники электросвязи и созданием новых информационных технологий решения интеллектуальных потребностей человечества.

Процессы развития инфокоммуникационных технологий можно условно охарактеризовать по шести базовым составляющим:

телефонизация (Т) обеспечение населения стационарными телефонами. Этот процесс начался в конце XIX — начале XX веков и продолжается до настоящего времени, так как в большинстве развивающихся стран телефонная плотность крайне низка, что и определяет экономическую основу развития телефонизации;

телевизионное вещание (ТВ), как и телефонизация, процесс развития телевидения начался давно и продолжает непрерывно совершенствоваться;

компьютеризация (К) — обеспечение населения персональными компьютерами и другими средствами вычислительной техники;

мобильная телефонизация (МТ) — предоставление населению мобильной телефонной связи;

телекомпьютеризация (ТК) — процесс вхождения (соединения) компьютеров во Всемирную сеть связи. Одним из проявлений телекомпьютеризации является Интернет;

мобильная телекомпьютеризация (МТК) — объединение мобильных компьютеров во Всемирную сеть связи.

Направления развития инфокоммуникационных технологий показаны на рис. 3.2.

Рис. 3.2. Направления развития инфокоммуникаций.

В будущем электросвязь и информатика претерпят существенные изменения, при которых приемо-передающее устройство и компьютер будут интегрированы в один терминал. В настоящее время развитие инфокоммуникационного сектора в мире происходит одновременно по нескольким направлениям: системное, технологическое, структурное и экономическое.

Информационные терминалы и оборудование обработки, хранения и преобразования информации определяет информационную составляющую, а совокупность базовых сетей и сетей доступа — телекоммуникационную составляющую инфокоммуникационной инфраструктуры.

Исходя из этого, телекоммуникационная сеть — это совокупность базовой сети и сетей доступа, а информационная сеть — совокупность телекоммуникационной сети, оборудования пользователя и необходимых для их взаимодействия протоколов и интерфейсов.

Рис. 3.3. Структурная схема системы электросвязи:

1 – источник информации;

2 – преобразователь информации в электрический сигнал;

3 – система передачи;

4 – среда (направляющая система);

5 – преобразователь электрического сигнала в информацию;

6 – потребитель информации

Источником и потребителем информации может быть человек, ЭВМ, устройство телемеханики или телеуправления и т.д. Преобразователями информации в сигнал и обратно могут быть: телеграфные и фототелеграфные аппараты, передающая и приемная ТВ-трубки и др.

Общепринято следующее содержательное толкование термину электросвязь.Связьпредставляет собой процесс передачи сообщений от источника к получателю.

Сообщением называют совокупность сведений о состоянии какого-либо материального объекта. Источник и получатель сообщений разделены некоторой средой, в которой источник образует возмущения, отображающие сообщение и воспринимаемые получателем.

Физическая реальность, изменения которой в пространстве и во времени отображают передаваемое сообщение, называется сигналом.Например, при разговоре источником сообщений является голосовой аппарат человека, в качестве сигнала выступает изменяющееся в пространстве и во времени воздушное давление — акустические волны; получателем служит человеческое ухо.

В современном обществе для передачи различного рода сообщений широко используются электрические сигналыэлектромагнитные колебания, изменения параметров которых отображают передаваемые сообщения.

Электрические сигналы имеют ряд преимуществ перед сигналами другой физической природы — они могут передаваться на большие расстояния, их форму можно преобразовывать сравнительно простыми техническими средствами, скорость их распространения близка к скорости света.

В технических отраслях знаний термин «сигнал» (signal, от латинского signum – знак) очень часто используется в широком смысловом диапазоне, без соблюдения строгой терминологии.

Под ним понимают:

— техническое средство для передачи, обращения и использования информации — электрический, магнитный, оптический сигнал;

Читайте также:  Как снять основное средство с консервации

— физический процесс, представляющий собой материальное воплощение информационного сообщения — изменение какого-либо параметра носителя информации (напряжения, частоты, мощности электромагнитных колебаний, интенсивности светового потока и т.п.) во времени, в пространстве или в зависимости от изменения значений каких-либо других аргументов (независимых переменных);

— смысловое содержание определенного физического состояния или процесса, как, например, сигналы светофора, звуковые предупреждающие сигналы и т.п.

Все эти понятия объединяет конечное назначение сигналовэто определенные сведения, сообщения, информация о каких-либо процессах, состояниях или физических величинах объектов материального мира, выраженные в форме, удобной для передачи, обработки, хранения и использования этих сведений.

Термин “сигнал” очень часто отождествляют с понятиями “данные” (data) и “информация” (information). Действительно, эти понятия взаимосвязаны и не существуют одно без другого, но относятся к разным категориям.

Понятие информации имеет много определений, от наиболее широкого (информация есть формализованное отражение реального мира) до практического (сведения и данные, являющиеся объектом хранения, передачи, преобразования, восприятия и управления).

В настоящее время мировая наука все больше склоняется к точке зрения, что информация, наряду с материей и энергией, принадлежит к фундаментальным философским категориям естествознания и относится к одному из свойств объективного мира, хотя и несколько специфичному.

Что касается “данных” (от латинского datum – факт), то это совокупность фактов, результатов наблюдений, измерений о каких-либо объектах, явлениях или процессах материального мира, представленных в формализованном виде, количественном или качественном.

Это не информация, а только атрибут информации — сырье для получения информации путем соответствующей обработки и интерпретации (истолкования).

Наука и техника интернациональны, и используют, в основном, общепринятые термины, большинство из которых англоязычны.

Термин «signal» в мировой практике является общепринятым для характеристики формы представления данных, при которой данные рассматриваются как результат некоторых измерений объекта исследований в виде последовательности значений скалярных величин (аналоговых, числовых, графических и пр.) в зависимости от изменения каких-либо переменных значений (времени, энергии, температуры, пространственных координат, и пр.).

С учетом этого, в дальнейшем под термином “сигнал” в узком смысле этого слова будем понимать каким-либо образом упорядоченное отображение в изменении физического состояния какого-либо объекта – материального носителя сигнала, определенных данных о характере изменения в пространстве, во времени или по любой другой переменной физических величин, физических свойств или физического состояния объекта исследований.

А так как данные содержат информацию, как об основных целевых параметрах объекта исследований, так и о различных сопутствующих и мешающих факторах измерений, то в широком смысле этого слова можно считать, что сигнал является носителем общей измерительной информации.

При этом материальная форма носителей сигналов (механическая, электрическая, магнитная, акустическая, оптическая и любая другая), равно как и форма отображения в каких-либо физических параметрах или процессах носителей, значения не имеет.

Источник



Сигналы как способ представления информации.

Сообщение является составной частью информации. Его можно рассматривать как форму представления (речь, текс, изображения, цифровые данные, графики, таблицы и т.п.) и как способ существования (передача сведений по линии связи). Для сообщения характерно наличие отправителя и получателя информации, а также используемая среда для её доставки в виде линии передач.

Сигнал представляет собой форму сообщения, преобразованного в целях его отображения передачи и регистрации. Сигнал переносит сообщение (информацию) на расстояние с использованием физической среды передач. Сигнал всегда является функций времени, даже если сообщение таковым не является. Например, неподвижное изображение, передаваемое по телевизионному каналу.

Данные следует рассматривать как зарегистрированные признаки неиспользуемой информации об объекте, которые хранятся в каком-либо месте. Когда же эти данные начинают использоваться для уменьшения неопределённости об объекте, они превращаются в информацию. Например, информацией принято считать поток компьютерных данных (компьютерный трафик), передаваемой по линии связи. Таким образом, информация является общим понятием, включающим в себя сообщения, сигналы и данные.

Читайте также:  Как заполнить акт приема передачи основных средств образец

Классификация сигналов.

По непрерывности:

  1. континуальные (от лат. непрерывные) – сигналы обычно называют аналоговыми, поскольку они являются аналогом реального физического процесса. Аналоговые сигналы используются в аппаратуре, радиосвязи и телевидении.
  2. дискретные – относятся импульсные и цифровые сигналы. Особенность цифровых сигналов проявляется в том, что они, имея импульсную форму, несут в себе информацию, которую можно трактовать как некоторую последовательность двоичных цифр.

По использованию дополнительных периодических колебаний:

  1. первичные (исходные, немодулированные) непосредственно отражают передаваемые сообщения. Наиболее ярким примером таких сигналов являются электрические колебания в цепи микрофона, представляющие собой копию исходного звукового сигнала. На приёмном пункте исходное звуковое сообщение выделяется путём непосредственного воздействия сигнала на телефон (без каких-либо дополнительных преобразований). Примером цифрового сигнала может служить 7-битная последовательность, несущая в себе информацию о десятичных цифрах. При приёме такой последовательности на 7-сегментном индикаторе высвечивается десятичная цифра. Главная особенность первичных сигналов состоит в том, что каждому абоненту сети для передачи сообщения требуется индивидуальная линия связи.
  2. модулированные сигналы для транспортировки сообщения (первичного сигнала) используют дополнительно гармонические колебания или периодическую последовательность импульсов прямоугольной формы. Модуляцией называют процесс управления параметрами несущих колебаний с помощью первичного сигнала. При использовании гармонических колебаний в зависимости от управляющего параметра различают амплитудную, частотную и фазовую модуляцию. С помощью модулированных сигналов можно передавать несколько сообщений по одной линии связи, поэтому одной линией связи (средой передачи) могут пользоваться многие абоненты.

Основные понятия. Кодирование сигналов

Под кодом понимают символьное представление информации, а под кодированием– переход по определённому алгоритму от исходной формы символьного представления к новой форме. Декодирование – обратное преобразование.

Код можно характеризовать 3 основными параметрами:

  1. основанием, представляющим собой число m различных элементарных символов (или алфавит) из которых составляют код. При m=2 код называется двоичным или бинарным, при m=3 – троичным и т.д. В цифровой технике используется двоичный код, при котором один из элементарных символов является 1, другим – 0.
  2. значностью, которое определяется числом n символов алфавита, образующую кодовую комбинацию. Код называется равномерным, если в кодовых комбинациях используется постоянное число символов, и неравномерным в противном случае. Примером равномерного кода является код Бодо (n=5), неравномерного – код Морзе (разное n).
  3. Максимальным числом N возможных кодовых комбинаций, которое при заданных m и n выражается следующим соотношением: N=m n . Например, при m=2 и n=3 получим 8 кодовых комбинаций: 000 001 010 011 100 101 110 111.

Требования к кодированию.

К основным требованиям следует отнести:

1. уменьшение уровня низкочастотной (и постоянной) составляющей в спектре передаваемых сообщений.

2. обеспечение синхронизации между передатчиком и приёмником.

3. обнаружение и по возможности исправление битовых ошибок.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Источник

1. Понятие сигнала.

Сигналом (от лат. signum — знак) называется физический процесс или явление, несущее сообщение о каком-либо событии, состоянии объекта, либо передающее команды управления, оповещения и т.д. Таким образом, сигнал является материальным носителем сообщения. Таким носителем может служить любой физический процесс (свет, электрическое поле, звуковые колебания и т.п.). В радиоэлектронике изучаются и используются в основном электрические сигналы. Сигналы как физические процессы наблюдаются с помощью различных приборов и устройств (осциллографом, вольтметров, приемников). Любая модель отражает ограниченное число наиболее существенных признаков реального физического сигнала. Несущественные признаки сигнала игнорируются для упрощения математического описания сигналов. Общим требованием к математической модели является максимальное приближение к реальному процессу при минимальной сложности модели. Функции, описывающие сигналы могут принимать вещественные и комплексные значения, поэтому часто говорят о вещественных и комплексных моделях сигналов.

Читайте также:  Средство для мытья посуды семь звезд лимон канистра 5 л

Классификация сигналов. По возм-ти предсказания мгн. значений сигнала в любой момент времени разл-ют:

— Детерминированные сигналы, т.е. такие сигналы, для которых мгновенные значения для любого момента времени известны и предсказуемы с вероятностью равной единице;

— Случайные сигналы, т.е. такие сигналы, значение которых в любой момент времени невозможно предсказать с вероятностью равной единице.

Все сигналы, несущие информацию являются случайными, поскольку полностью детерминированный сигнал (известный) информации не содержит.

Простейшими примерами детерминированного и случайного сигналов являются напряжения сети и напряжения шума соответственно (см. рис.2.1).

В свою очередь случайные и детерминированные сигналы могут подразделяться на непрерывные или аналоговые сигналы и дискретные сигналы, имеющие несколько разновидностей. Если сигнал можно измерять (наблюдать) в любой момент времени, то его называют аналоговым. Такой сигнал существует в любой момент времени. Дискретные сигналы могут наблюдаться и измеряться в дискретные (отдельные) ограниченные по длительности к моменту появления отрезки времени. К дискретным сигналам относятся импульсные сигналы.

На рисунке показаны два вида импульсов. Видеоимпульс и радиоимпульс. При формировании радиоимпульсов видеоимпульс используется как управляющий (модулирующий) сигнал и в этом случае между ними существует аналитическая связь:

(2.1)

При этом называется огибающей радиоимпульса, а функция— его заполнением.

Импульсы принято характеризовать амплитудой A, длительностью , длительностью фронтаи срезаи при необходимости частотойили периодомповторения.

Импульсные сигналы могут быть самых различных видов. В частности различают импульсные сигналы называемые дискретными (см. рис.2.3).

Эта разновидность сигналов может быть представлена математической моделью в виде счетного множества значений функции — где i = 1, 2, 3, . k, отсчитываемых в дискретные моменты времени. Шаг дискретизации сигнала по времени и по амплитуде обычно величина постоянная для данного типа сигнала, т.е. минимальное приращение сигнала

;

Каждое из значений конечного множества S можно представить в двоичной системе исчисления в виде числа: — 10101;— 11001;— 10111. Такие сигналы называют цифровыми.

Классификация радиосистем и решаемых ими задач

По выполняемым функциям информационные радиосистемы могут быть разделены на следующие классы:

передачи информации (радиосвязь, радиовещание, телевидение);

извлечения информации (радиолокация, радионавигация, радиоастрономия, радиоизмерения и т.д.);

разрушения информации (радиопротиводействие);

управления различными процессами и объектами (беспилотные летательные аппараты и др.);

В системе передачи информации имеется источник информации и ее получатель. В радиосистеме извлечения информации информация как таковая не передается, а извлекается или из собственных сигналов, излученных в направлении на исследуемый объект и отраженных от него, или из сигналов других радиосистем, или из собственного радиоизлучения различных объектов.

Радиосистемы разрушения информации служат для создания помех нормальной работе конкурирующей радиосистемы путем излучения мешающего сигнала, или приема, умышленного искажения и переизлучения сигнала.

В радиосистемах управления решается задача выполнения объектом некоторой команды, посылаемой с пульта управления. Командные сигналы являются информацией для следящего устройства, выполняющего команду.

Основными задачами, решаемыми радиосистемой при приеме информации, являются:

Обнаружение сигнала на фоне помехи.

Различение сигналов на фоне помехи.

Оценка параметров сигнала.

Наиболее просто решается первая задача, в которой с заданными вероятностями правильного обнаружения и ложной тревоги следует принять решение о наличии известного сигнала в принятом сообщении. Чем выше уровень задачи, тем сложнее становится схема принимающего устройства.

2. Энергия, мощность, ортогональность и когерентность сигналов. Взаимная энергия сигналов (интеграл похожести). Понятие нормы сигнала.

Источник