Меню

Перечислите погрешности средств измерений что называют классом точности

ПОГРЕШНОСТИ И КЛАССЫ ТОЧНОСТИ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

ПОГРЕШНОСТИ И КЛАССЫ ТОЧНОСТИ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

Измеренная прибором величина всегда отличается от истинного значения на некоторое число, называемое погрешностью прибора. Погрешности измерительных приборов определяют поверкой, т. е. сравнением показаний по­веряемого прибора с показаниями более точного, образцового прибора при измерении ими од­ной и той же величины. Значение измеряемой величины, определенное по образцовому прибо­ру, принято считать действительным. Однако действительное значение отличается от истинно­го на погрешность, присущую данному образцовому прибору. Различают абсолютную, относительную и приведенную погрешности измерения.

Абсолютной погрешностью измерительного прибора называют разность между его показанием и действительным значением измеряемой величины.

Относительной погрешностью называют отношение абсолютной погрешности к действительному зна­чению измеряемой величины, выраженное в относительных единицах или в процентах.

Приведенная погрешность – это отношение наибольшей абсолютной погрешности к верхнему пределу измерений прибора.

По значению приведенной погрешности измерительные приборы делят на группы по классу точности. Класс точности обобщенная характеристика измерительного прибора, определяющая пре­делы допустимых погрешностей. Для электроизмерительных приборов класс точности указывается в вида числа, равного максимальной допустимой приведенной погреш­ности (в %). Согласно ГОСТ 1845-59, электроизмерительные приборы делят на 8 классов по точности: 0,05; 0,1; 0,2 – образцовые приборы; 0,5; 1,0 – лабораторные; 1,5; 2,5; 4,0 – технические приборы. Об­разцовые приборы считаются более высокого класса точности по отношению к лабораторным и техническим приборам, а лабораторные – по отношению к техническим.

Определим по классу точности прибора его погрешности. Если прибор (например, вольтметр с верхним пределом измерений 150 В) имеет класс точности 1,0, то основная приведенная погрешность не превышает 1 %. Максимальная абсолютную по­грешность, которую может иметь прибор в любой точке шкалы не будет превышать Относительная же погрешность при этом зависит от измеряемого напряжения.

Если этим вольтметром можно измерять напряжение 10 В, то относительная погрешность может составить . Если же измерять напряжение 100 В, то относительная погрешность может составить

Из этого примера видно, что для повышения точности измерения прибор надо выбирать так, чтобы, во-первых, он имел более высокий класс точности, и чтобы, во-вторых, предел измерения был бли­зок к значению измеряемой величины. Это означает, что для получения возможно меньших относительных ошибок, надо добиваться достаточно большого отклонения стрелки (желательно, чтобы использовалась последняя треть шкалы).

С другой стороны, для того чтобы добиться большой точности при измерении прибором более низкого класса, необходимо выбрать прибор с наименьшим возможным диапазоном измерений.

Следует правильно формулировать предложение, в котором дана количественная оценка по­грешности. Например: «Измерение тока с абсолютной погрешностью до 1 мА», «Измерение то­ка с относительной погрешностью до 1 %. (Выражение «Измерение тока с точностью до 1 мА» неправильно).

Источник



Погрешность. Классы точности средств измерений.

Позволю себе вначале небольшое отступление. Такие понятия как погрешность, класс точности довольно подробно описываются в нормативной документации ГОСТ 8.009-84 «Нормируемые метрологические характеристики средств измерений», ГОСТ 8.401-80 «Классы точности средств измерений. Общие требования» и им подобных. Но открывая эти документы сразу возникает чувство тоски… Настолько сухо и непонятно простому начинающему «киповцу», объяснены эти понятия. Давайте же пока откинем такие вычурные и непонятные нам определения, как «среднее квадратическое отклонение случайной составляющей погрешности» или «нормализованная автокорреляционная функция» или «характеристика случайной составляющей погрешности от гистерезиса — вариация Н выходного сигнала (показания) средства измерений» и т. п. Попробуем разобраться, а затем свести в одну небольшую, но понятную табличку, что же такое «погрешность» и какая она бывает.

Читайте также:  Нанести средство под крем это как

Погрешности измерений – отклонения результатов измерения от истинного значения измеряемой величины. Погрешности неизбежны, выявить истинное значение невозможно.

По числовой форме представления подразделяются:

  1. Абсолютная погрешность: Δ = Xд — Xизм, выражается в единицах измеряемой величины, например в килограммах (кг), при измерении массы.
    где Xд – действительное значение измеряемой величины, принимаются обычно показания эталона, образцового средства измерений;
    Xизм – измеренное значение.
  2. Относительная погрешность: δ = (Δ ⁄ Xд) · 100, выражается в % от действительного значения измеренной величины.
  3. Приведённая погрешность: γ = (Δ ⁄ Xн) · 100, выражается в % от нормирующего значения.
    где Xн – нормирующее значение, выраженное в тех же единицах, что и Δ, обычно принимается диапазон измерения СИ (шкала).

По характеру проявления:

  • систематические (могут быть исключены из результатов);
  • случайные;
  • грубые или промахи (как правило не включаются в результаты измерений).

В зависимости от эксплуатации приборов:

  • основная – это погрешность средства измерения при нормальных условиях; (ГОСТ 8.395-80)
  • дополнительная погрешность – это составляющая погрешности средства измерения, дополнительно возникающая из-за отклонения какой-либо из влияющих величин от нормативного значения или выход за пределы нормальной области значений. Например: измерение избыточного давления в рабочих условиях цеха, при температуре окружающего воздуха 40 ºС, относительной влажности воздуха 18% и атмосферном давлении 735 мм рт. ст., что не соответствует номинальным значениям влияющих величин при проведении поверки.
Наимено вание погреш ности Формула Форма выражения, записи Обозначение класса точности
В докумен тации На сред стве изме рений
Абсолют ная Δ = Xд — Xизм Δ = ±50 мг
Примеры:
Номинальная масса гири 1 кг ±50 мг
Диапазон измерения весов среднего III класса точности от 20 г до 15 кг ±10 г
Класс точности: М1
Класс точности: средний III
Примечание:
на многие виды измерений есть свои НД по выражению погрешностей, здесь для примера взято для гирь и весов.
М1
Относи тельная δ = (Δ ⁄ Xд) · 100 δ = ±0,5
Пример:
Измеренное значение изб. давления с отн. погр.
1 бар ±0,5%
т.е. 1 бар ±5 мбар (абс. погр.)
Класс точности 0,5
Приве дённая:
при равно мерной шкале
γ = (Δ ⁄ Xн) · 100 γ = ±0,5
Пример:
Измеренное значение на датчике изб. давления, при шкале от 0 до 10 бар
1 бар (= 0,5 % от 10 бар)
т.е. 1 бар ±50 мбар (абс. погр.)
Класс точности весов 0,5 0,5
с сущес твенно неравно мерной шкалой γ = ±0,5
Прописывается в норм .док-ии на СИ для каждого диапазона измерения (шкалы) своё нормирующее значение
Класс точности 0,5

Как определить погрешность комплекта приборов, в который входит первичный преобразователь, вторичный преобразователь (усилитель) и вторичный прибор. У каждого из элементов этого комплекта есть своя абсолютная, относительная или приведённая погрешность. И чтобы оценить, общую погрешность измерения, необходимо все погрешности привести к одному виду, а дальше посчитать по формуле:

Дальше будет интересно, наверное, только метрологам и то, только начинающим. Теперь совсем немного вспомним о средних квадратических отклонениях (СКО). Зачем они нужны? Так как истинное значение выявить невозможно, то необходимо хотя бы наиболее точно приблизиться к нему или определить доверительный интервал, в котором истинное значение находится с большой долей вероятности. Для этого применяют различные статистические методы, приведём формулы наиболее распространённого. Например, Вы провели n количество измерений чего угодно и Вам необходимо определить доверительный интервал:

  1. Определяем среднее арифметическое отклонение:

    где n – количество отклонений
  2. Определяем среднее квадратическое отклонение (СКО) среднего арифметического:
  3. Рассчитываем случайную составляющую погрешности:

    где t – коэффициент Стьюдента, зависящий от числа степеней свободы
    Таблица 1.
    α =0,68 α =0,95 α =0,99
    n tα,n n tα,n n tα,n
    2 2,0 2 12,7 2 63,7
    3 1,3 3 4,3 3 9,9
    4 1,3 4 3,2 4 5,8
    5 1,2 5 2,8 5 4,6
    6 1,2 6 2,6 6 4,0
    7 1,1 7 2,4 7 3,7
    8 1,1 8 2,4 8 3,5
    9 1,1 9 2,3 9 3,4
    10 1,1 10 2,3 10 3,3
    15 1,1 15 2,1 15 3,0
    20 1,1 20 2,1 20 2,9
    30 1,1 30 2,0 30 2,8
    100 1,0 100 2,0 100 2,6
  4. Определяем СКО систематической составляющей погрешности:
  5. Рассчитываем суммарное СКО:
  6. Определяем коэффициент, зависящий от соотношения случайной и систематической составляющей погрешности:
  7. Проводим оценку доверительных границ погрешности:
Читайте также:  Инъекция как средство контрацепции

В последнее время всё чаще на слуху термин «неопределённость». Медленно, но верно и настойчиво его внедряют в отечественную метрологию. Это дань интеграции нашей экономики во всемирную, естественно необходимо адаптировать нормативную документацию к международным стандартам. Не буду тут «переливать из пустого в порожнее», это хорошо сделано в различных нормативных документах. Чисто моё мнение, «расширенная неопределённость измерений» = основная погрешность + дополнительная, которая учитывает все влияющие факторы.

Источник

Погрешности и класс точности

Одним из основополагающих понятий метрологии является понятие погрешности измерений.

Погрешностью измерения называют отклонение измеренного значения

физической величины от её истинного значения.

Погрешность измерений, в общем случае, может быть вызвана следующими причинами:

— несовершенством принципа действия и недостаточным качеством элементов используемого средства измерения;

— несовершенством метода измерений и влиянием используемого средства измерения на саму измеряемую величину, зависящим от способа использования данного средства измерения;

— субъективными ошибками экспериментатора.

Из-за того, что истинное значение измеряемой величины никогда не известно (в противном случае отпадает необходимость в проведении измерений), то численное значение погрешности измерений может быть найдено только приближенно. Наиболее близким к истинному значению измеряемой величины является значение, которое может быть получено при использовании эталонных средств измерений (средств измерений наивысшей точности). Это значение условились называть действительным значением измеряемой величины. Действительное значение также является неточным, однако, из-за малой погрешности эталонных средств измерений, погрешностью определения действительного значения пренебрегают.

1.3.1 Классификация погрешностей. По форме представления различают понятия абсолютной погрешности измерений и относительной погрешности измерений.

Абсолютной погрешностью измерений называют разность между измеренным и действительным значениями измеряемой величины:

, (16)

где ∆ – абсолютная погрешность,

– измеренное значение,

– действительное значение измеряемой величины.

Абсолютная погрешность имеет размерность измеряемой величины. Знак абсолютной погрешности будет положительным, если измеренное значение больше действительного, и отрицательным в противном случае.

Относительной погрешностью называют отношение абсолютной погрешности к действительному значению измеряемой величины:

(17)

где ε – относительная погрешность.

Относительная погрешность показывает, какую часть (в %) от измеренного значения составляет абсолютная погрешность. Относительная погрешность позволяет нагляднее, чем абсолютная погрешность, судить о точности измеренного значения.

Читайте также:  Самые эффективные средства для удаления папиллом

Значение приведенной погрешности определяется как:

(18)

где xm = xmax – xmin – пределы измерения прибора.

1.3.2 Классы точности средств измерений. Исторически по точности средства измерений подразделяют на классы. Иногда их называют классами точности, иногда классами допуска, иногда просто классами.

Класс точности средства измерений – это его характеристика, отражающая точностные возможности средств измерений данного типа.

Допускается буквенное или числовое обозначение классов точности. Средствам измерений, предназначенным для измерения двух и более физических величин, допускается присваивать различные классы точности для каждой измеряемой величины. Средствам измерений с двумя или более переключаемыми диапазонами измерений также допускается присваивать два или более класса точности.

Если нормируется предел допускаемой абсолютной основной погрешности, или в различных поддиапазонах измерений установлены разные значения пределов допускаемой относительной основной погрешности, то, как правило, применяется буквенное обозначение классов.

Так, например платиновые термометры сопротивления изготовляют с классом допуска А или классом допуска В. При этом для класса А установлен предел допускаемой абсолютной основной погрешности:

, (19)

Соответственно, для класса B:

, (20)

где – температура измеряемой среды.

Если для средств измерений того или иного типа нормируется одно значение предельно-допустимой приведенной основной погрешности, или одно значение предельно-допустимой относительной основной погрешности, или указываются значения c и d, то для обозначения классов точности используются десятичные числа. Для средств измерений с преобладающей аддитивной погрешностью численное значение класса точности выбирается из указанного ряда равным предельно-допустимому значению приведенной основной погрешности, выраженной в процентах.

1.3.3 Правила округления и записи результата измерений. Нормирование пределов допускаемых погрешностей средств измерений производится указанием значения погрешностей с одной или двумя значащими цифрами.

По этой причине при расчете значений погрешностей измерений также должны быть оставлены только первые одна или две значащие цифры.

Для округления используются следующие правила:

— погрешность результата измерения указывается двумя значащими цифрами, если первая из них не более 2, и одной цифрой, если первая из них 3 и более;

— показание прибора округляется до того же десятичного разряда, которым заканчивается округленное значение абсолютной погрешности;

— округление производится в окончательном ответе, промежуточные вычисления выполняют с одной – двумя избыточными цифрами.

2 Описание технических характеристик устройств лабораторного стенда
2.1 Преобразователь дифференциального давления EJX110A

Преобразователь EJX110A (рисунок 7) применяют для измерения расхода жидкостей, пара, газа методом переменного перепада давления. Его используют в комплекте с диафрагмой ДФК10 25.

Высокоэффективный датчик дифференциального давления EJX110A содержит монокристаллический кремниевый резонансный чувствительный элемент и может быть использован для измерения расхода жидкости, газа или пара, а также для измерения уровня жидкости, плотности и давления. Его выходной сигнал 4-20 мА постоянного тока соответствует величине измеряемого дифференциального давления.

Рисунок 7 – Преобразователь дифференциального давления EJX110A

Промежуточным звеном между диафрагмой и датчиком перепада дифференциального давления является пятивентильный манифольд прямого монтажа HDS5M.

Манифольд представляет собой объединение отдельных клапанов в унифицированный блок. Манифольд позволяет выполнять различные задачи и функции без демонтажа датчика из его рабочего положения [2].

Точность измерения сигнала статического давления:

— абсолютное давление 1 МПа и выше – ±0,2% от шкалы;

— абсолютное давление менее 1 МПа – ±0,2% × (1 МПа / шкала) от шкалы.

Источник