Меню

Фармакокинетика лекарственных средств что это такое

Фармакокинетика лекарственных средств!

Фармакокинетика лекарственных средств.

Фармакокинетика – это раздел фармакологии, изучающий судьбу лекарственных средств в организме, то есть всасывание, распределение по органам и тканям, метаболизм и выведение. То есть, путь лекарственного вещества в организме от момента введения до выведения из организма.

Существуют разные пути введения лекарственного средства в организм. Их можно разделить на 2 большие группы: энтеральный (через желудочно-кишечный тракт), парентеральный (минуя желудочно-кишечный тракт). К энтеральным путям введения относят: пероральный (per os – через рот), сублингвальный (под язык), через зонд в желудок и двенадцатиперстную кишку, ректальный (через прямую кишку). К парентеральным путям введения относятся: накожный, внутрикожный, подкожный, внутримышечный, внутривенный, внутриартериальный, внутрисердечный, под оболочки мозга, ингаляционный, интрастернальный (в грудину). Каждый из путей введения имеет свои преимущества и недостатки.

Самый распространенный путь введения – это через рот (пероральный). Этот путь удобный, простой, не требуется стерильность препаратов. Всасывание лекарственного вещества идет частично в желудке, частично в кишечнике. Однако некоторые лекарственные вещества могут разрушаться под действием желудочного сока. В этом случае лекарственное вещество помещают в капсулы, которые не разрушаются желудочным соком. Под языком лекарственное средство всасывается быстро, минует печень и не вступает в контакт с содержимым желудка и кишечника (Нитроглицерин). При ректальном способе введения (суппозитории, клизмы) лекарственное вещество быстро всасывается, частично минуя печень. Однако, далеко не все препараты хорошо всасываются из слизистой прямой кишки, а некоторые препараты могут раздражать слизистые оболочки.

Из парентеральных путей введения чаще используют: под кожу, внутримышечный, внутривенный. Быстрый эффект наступает при внутривенном пути введения. Однако к трудностям парентеральных способов введения относят: болезненность укола, стерильность препаратов и шприцов, необходимость медицинского персонала для проведения инъекций.

Поступив в организм, лекарственное вещество должно всосаться. Всасывание (абсорбция) – это процесс поступления лекарственного вещества в кровеносную или лимфатическую систему из места введения. Основные механизмы всасывания: пассивная диффузия, облегченная диффузия, активный транспорт, пиноцитоз. Факторы, влияющие на всасывание лекарственного вещества при приеме внутрь: растворимость, лекарственная форма, pH желудка и кишечника, активность ферментов желудочно-кишечного тракта, перистальтика желудочно-кишечного тракта, прием пищи, мальабсорбция, дисбактериоз.

После всасывания лекарственного вещества в кровь оно будет циркулировать там, в «свободной» или «связанной» форме. «Свободная» форма (не связана с белками крови) растворима в водной фазе плазмы крови. Эта форма легко проникает через стенку капилляров в ткани и оказывает фармакологический эффект. «Связанная» форма – это часть лекарственного вещества, которая связана с белками крови (чаще с альбуминами) и неспособна, проникать в ткани. Эта форма представляет собой как бы депо препарата и по мере выведения лекарственного вещества из организма отщепляется от белка и переходит в «свободную» форму. Следовательно: только «свободная» форма лекарственного вещества оказывает фармакологический эффект.

После всасывания в кровь лекарственное вещество подвергается распределению по органам и тканям. Распределение по органам и тканям чаще всего бывает неравномерным. Степень поступления в ту или иную ткань зависит от разных факторов: от молекулярной массы, от растворимости в воде и липидах, от степени диссоциации; от возраста, пола; от массы жировых депо; от функционального состояния печени, почек, сердца; от способности преодолевать гистогематические барьеры.

К гистогематическим барьерам относят: капиллярную стенку, гематоэнцефалический барьер, гематоофтальмический барьер, плацентарный барьер. Капилляры легко проницаемы для лекарственных веществ, так как стенка капилляров имеет широкие поры, через которые легко проходят водорастворимые вещества с молекулярной массой не больше инсулина (5 – 6 кДа). А жирорастворимые вещества диффундируют через мембрану клеток.

Гематоэнцефалический барьер – представляет собой капиллярную стенку, которая является многослойной мембраной (эндотелий, межуточное вещество и глиальные клетки головного и спинного мозга). Такая мембрана лишена пор. Через гематоэнцефалический барьер легко проникают липофильные вещества путем простой диффузии (например, тиопентал натрия – наркозное средство). Для полярных соединений (пенициллины, миорелаксанты) гематоэнцефалический барьер не проницаем. Гематоэнцефалический барьер гипоталамуса, гипофиза отличается повышенной проницаемостью для лекарственных веществ. Проницаемость гематоэнцефалического барьера повышается при менингите, арахноидите, гипоксии, черепно-мозговых травмах. Некоторые лекарственные препараты (кофеин, эуфиллин, лидаза) повышают проницаемость гематоэнцефалического барьера.

Гематоофтальмический барьер отделяет кровь капилляров от внутриглазной жидкости в камерах глаза. В камеры глаза хорошо проходят липофильные препараты.

Плацентарный барьер разделяет кровообращение матери и плода. На ранних стадиях беременности наблюдается большая порозность этого барьера и многие лекарства легко проникают в плод. Затем этот барьер «укрепляется» и приобретает свойства липидной мембраны. Но с 33 – 35-й недели беременности истончается плацента и значительно повышается проницаемость плацентарного барьера. Это создает опасную ситуацию для плода. Не проникают через плацентарный барьер крупномолекулярные вещества (инсулин, полиглюкин), а также гидрофильные ионизированные молекулы: миорелаксанты, ганглиблокаторы.

Следующий этап фармакокинетики – это элиминация лекарственного вещества. Элиминация (от латинского eliminatum – удалять) – удаление лекарств из организма путем биотрансформации и экскреции.

Биотрансформация – это метаболическое превращение лекарств, в результате которых они приобретают полярные группы, то есть уменьшается растворимость в липидах и возрастает растворимость в воде. Полярные метаболиты пригодны к удалению из организма. Для примера хочу сказать, что если бы не было метаболизма, то одна терапевтическая доза снотворного средства этаминала могла бы находиться в организме 100 лет. Биотрансформация лекарств чаще всего (90 – 95%) происходит в печени, реже в слизистой оболочке кишечника, почках, легких, коже, в крови. Наиболее изучен метаболизм лекарств в печени. Метаболизм в печени происходит: либо в эндоплазматическом ретикулуме гепатоцитов с помощью микросомальных оксидаз смешанной функции либо вне эндоплазматического ретикулума (в митохондриях) с помощью немикросомальных ферментов.

Читайте также:  Что называют средствами вычислительной техники

Можно выделить 2 фазы биотрансформации. Первая фаза включает 3 реакции:

В процессе этих реакций молекулы субстрата приобретают полярные группы (гидроксильные, аминные и другие), в результате чего метаболиты лекарственных веществ становятся водорастворимыми и пригодными для выведения. Приведу несколько примеров биотрансформации лекарств. Окислению подвергаются: алкоголь, фенобарбитал, морфин, эфедрин, хлорпромазин. Восстановлению подвергаются: пропранолол, хлорамфеникол, нитрофураны. Гидролизируют следующие лекарства: прокаин, новокаинамид, сердечные гликозиды.

Вторая фаза биотрансформации включает реакции конъюгации, (то есть соединения, синтеза). Лекарственное вещество или метаболиты первой фазы связываются с некоторыми эндогенными веществами и образуют различные конъюгаты (соединения) с глюкуроновой кислотой (глюкоронизирование), уксусной кислотой (реакция ацетилирование), сульфатом, глицином, глутатионом, реакция метилирования по кислороду, азоту, сере. Иногда бывает так, то у одного и того же вещества наблюдается несколько этапов конъюгации: вначале (например) с глицином, потом – с глюкуроновой кислотой и так далее. В результате реакций конъюгации образуются водорастворимые вещества, которые быстро выводятся из организма. Примеры типовых реакций конъюгации: ацетилирование (сульфаниламиды, фтивазид, анестезин, прокаин), глюкуронизация (пропранолол, морфин, левомицетин), связывание с сульфатом (метилдофа, фенол), связывание с аминокислотами, с глицином (салициловая кислота, никотиновая кислота), метилирование: по кислороду (дофамин), по азоту (никотинамид), по сере (унитиол).

В результате биотрансформации лекарственные вещества меняют свою биологическую активность. Могут быть следующие варианты изменения их активности: потеря активности (инактивация) – наиболее частый вид, активация – это повышение активности. Например: фталазол после гидролиза превращается в активное вещество – норсульфазол; уротропин превращается в организме в активный формальдегид, витамин Д гидроксилируется в активный диоксивитамин «Д». Модификация основного эффекта, когда в процессе биотрансформации появляются другие свойства. Например, кодеин в организме частично деметилируется и превращается в морфин.

В процессе метаболизма под влиянием лекарственных средств может происходить индукция (усиление) или ингибирование (торможение) активности микросомальных ферментов печени. К препаратам-индукторам относят: фенобарбитал и другие барбитураты, зиксорин, рифампицин, димедрол, бутадион, стероидные гормоны, верошпирон и другие. При курсовом назначении этих препаратов-индукторов их метаболизм ускоряется в 3 – 4 раза К препаратам-ингибиторам метаболизма относят: эритромицин, левомицетин.

Следующий этап фармакокинетики – это выведение (экскреция) лекарственных веществ из организма. Это заключительный этап фармакокинетики. Лекарственные вещества и их метаболиты экскретируются разными путями: почками (чаще всего), через желудочно-кишечный тракт, легкими, кожей, железами (слюнными, потовыми, слезными, молочными).

Механизмы выведения почками: клубочковая фильтрация (пассивный процесс), канальцевая секреция (активный процесс), канальцевая реабсорбция (пассивный процесс). Клубочковой фильтрации подвергаются водорастворимые вещества с молекулярной массой до 5000 дальтон. Они не должны быть связаны с белками плазмы крови. Пример фильтрации – стрептомицин. Канальцевая секреция лекарственных веществ и метаболитов происходит против градиента концентрации с затратой энергии. Могут секретироваться вещества, связанные с белками. Пример секреции: бензилпенициллин (85%). Канальцевая реабсорбция происходит в дистальных отделах канальцев путем пассивной диффузии по градиенту концентрации. Благодаря реабсорбции пролонгируется (удлиняется) действие препарата (фенобарбитал, димедрол, диазепам).

Экскреция с желчью. Многие полярные лекарственные средства, имеющие молекулярную массу 300 и выше, могут выводиться с желчью через мембрану гепатоцитов, а также путем активного транспорта с помощью фермента глютатионтрансферазы. Степень связывания с белками плазмы крови значения не имеет. Неполярные лекарственные средства не экскретируются в желчь, но их полярные метаболиты довольно быстро попадают в желчь. Вместе с желчью лекарственные вещества попадают в кишечник и выделяются с калом. Некоторые препараты могут подвергаться в кишечнике деконъюгации с помощью кишечной микрофлоры. В этом случае эти препараты могут повторно всасываться (например, дигитоксин). Это явление называется энтерогепатическая (печеночно-кишечная) циркуляция.

Экскреция легкими. Некоторые лекарственные вещества могут выделяться частично или полностью через легкие. Это — летучие и газообразные вещества (например, средства для наркоза), этиловый спирт, камфора и другие.

Экскреция грудными железами. Некоторые препараты могут легко проникать в грудные железы и экскретироваться с молоком матери. В молоко легко проникают препараты, хорошо связывающиеся с жиром: теофиллин, левомицетин, сульфаниламиды, ацетилсалициловая кислота, препараты лития. Возможны токсические эффекты проникающих в грудное молоко лекарственных средств на грудного младенца. Особенно опасны: противоопухолевые препараты, препараты лития, изониазид, левомицетин; препараты, вызывающие аллергию (бензилпенициллин).

Экскреция со слюной. Некоторые препараты могут попасть в слюну путем пассивной диффузии. Чем более липофильный препарат, тем легче он проникает в слюну. Если концентрация препарата в слюне корригирует с концентрацией его в плазме крови, то в этих случаях легко определять концентрацию препарата в слюне. Например, антипирин, пармидин. Частично выделяются со слюной: парацетамол, лидокаин, литий, фенацетин, хинидин, теофиллин, пармидин, антипирин, клофелин.

Элиминация – суммарная величина биотрансформации + экскреции. В результате элиминации лекарственное вещество теряет активность (метаболизирует) и выводится из организма.

Квота-элиминация (или коэффициент элиминации) – это суточная потеря препарата, выраженная в процентах к препарату, содержащегося в организме. Квота-элиминация: строфантина 50%, дигитоксина 7%. Эта величина важна для режима дозирования.

Период полувыведения (полужизни, полуэлиминации) – это время, за которое концентрация препарата в плазме крови снижается наполовину (50%). Обозначается: Т½ в часах и минутах. Чем больше Т½, тем медленнее выводится препарат и его реже надо вводить в организм во избежаний побочных явлений. Эта величина зависит от: пути введения препарата, дозы, возраста; функции печени, почек.

Клиренс – это количественная оценка скорости экскреции лекарственных веществ. Почечный клиренс равен объему плазмы крови, который полностью очищается (освобождается) от лекарственного вещества за единицу времени (л/мин, мл/мин).

Читайте также:  В каких случаях не проводится инвентаризация основных средств

Общий клиренс – это объем плазмы крови, из которого за единицу времени выводится лекарственное вещество с мочой, желчью, легкими и другими путями. Это суммарная величина.

Важным параметром фармакокинетики является биодоступность лекарственного вещества – это доля введенной внутрь дозы вещества, которая поступает в общий кровоток в активной форме (в процентах). Биодоступность зависит от: полноты всасывания лекарственного вещества, степени инактивации в желудочно-кишечном тракте, интенсивности метаболизма при первичном прохождении через печень.

Вам надо знать 2 термина: первичное прохождение через печень лекарственного вещества, вторичное поступление в печень. «Первичное прохождение лекарственного вещества через печень» (или «метаболизм первого прохождения») применим для лекарственных препаратов, которые всасываются в желудке и тонком кишечнике, так как из этих органов лекарственное вещество попадает в воротную вену (venae portae), а далее – в печень и только потом поступает в общий кровоток и разносится по органам и тканям. А оттуда лекарственное вещество вновь поступает в печень, где происходит окончательный метаболизм лекарственного вещества, то есть вторичное поступление в печень.

Таким образом, только при приеме лекарственного средства per os, оно дважды поступает в печень. при первом прохождении через печень может начаться метаболизм лекарственного вещества. Кроме того, некоторые лекарственные вещества начинают метаболизировать уже в желудке и кишечнике. весь комплекс процессов, приводящих к инактивации лекарственного вещества до его попадания в общий кровоток называется «пресистемной элиминацией». Биодоступность выражается в процентах. Если лекарственное вещество вводить внутривенно, то биодоступность будет почти всегда 100%. «Объем распределения» (Vd) – это параметр фармакокинетики, который характеризует степень захвата вещества тканями из плазмы крови (л/кг). Эту величину можно использовать для оценки характера распределения препарата в организме, то есть где больше накапливается вещество: в клетке или в межклеточной жидкости. Если объем распределения низкий (менее 1 – 2 л/кг), то большая часть препарата находится в межклеточной жидкости и наоборот. Знание величины Vd пригодится для оказания помощи при передозировке препарата.

Источник



Фармакокинетика

1. Малая медицинская энциклопедия. — М.: Медицинская энциклопедия. 1991—96 гг. 2. Первая медицинская помощь. — М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. — М.: Советская энциклопедия. — 1982—1984 гг .

Смотреть что такое «Фармакокинетика» в других словарях:

фармакокинетика — фармакокинетика … Орфографический словарь-справочник

ФАРМАКОКИНЕТИКА — (от греч. pharmakon лекарство и kinetikos приводящий в движение), раздел фармакологии, изучающий скорости процессов поступления, распределения, биотрансформации и выведения лекарственных веществ из организма. Фармакокинетика токсических веществ… … Экологический словарь

фармакокинетика — сущ., кол во синонимов: 1 • фармация (5) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

фармакокинетика — – раздел фармацевтической химии, задачей которого является изучение закономерностей всасывания, распределения и выделения лекарственных препаратов из организма … Краткий словарь биохимических терминов

фармакокинетика — Раздел фармакологии, связанный с изучением концентрации и скорости прохождения лекарственного средства в организме [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN pharmacokinetics … Справочник технического переводчика

Фармакокинетика — В данной статье или разделе имеется список источников или внешних ссылок, но источники отдельных утверждений остаются неясными из за отсутствия сносок … Википедия

фармакокинетика — (фармако + греч. kinetikos относящийся к движению) раздел фармакологии, изучающий пути поступления, распределение и метаболизм лекарственных веществ в организме, а также их выведение … Большой медицинский словарь

ФАРМАКОКИНЕТИКА — (от греч. pharmakon лекарство и kinetikos приводящий в движение), изучает кинетич. закономерности процессов, происходящих с лек. ср вом в организме. Осн. фармакокинетич. процессы: всасывание, распределение, метаболизм и экскреция (выведение).… … Химическая энциклопедия

Фармакокинетика — процессы всасывания, метаболизации и экскреции лекарственного препарата и его производных. Например, это время, в течение которого концентрация препарата в крови достигает своего максимума, период его полураспада и т.п. * * * Раздел клинической… … Энциклопедический словарь по психологии и педагогике

ФАРМАКОКИНЕТИКА — (pharmacokinetics) раздел фармакологии, изучающий усвоение, распределение и метаболизм лекарственных веществ в организме, а также их выведение из организма … Толковый словарь по медицине

Источник

Фармакокинетика

В данной статье или разделе имеется список источников или внешних ссылок, но источники отдельных утверждений остаются неясными из-за отсутствия сносок.

Фармакокине́тика (от др.-греч. φάρμακον — лекарство и κίνησις — движение) — раздел медицины, изучающий кинетические закономерности химических и биологических процессов, происходящих с лекарственным средством в организме млекопитающего. Фармакокинетику не следует путать с фармакодинамикой; говорят, что фармакокинетика — это наука о химических превращениях лекарства в организме, тогда как фармакодинамика — это наука о механизме действия лекарства на организм.

Иначе говоря, фармакокинетика — это судьба отдельно взятой молекулы лекарственного вещества (биохимическая трансформация молекул лекарства в организме), а фармакодинамика — это судьба организма после действия этого лекарственного вещества ( механизм действия и эффекты)

Основные фармакокинетические процессы: всасывание, экскреция (выведение), распределение и метаболизм.

Содержание

История развития

Основы фармакокинетики создавались учёными разных специальностей в различных странах.

В 1913 немецкие биохимики Л. Михаэлис и M. Ментен предложили уравнение кинетики ферментативных процессов, широко используемое в современной фармакокинетике для описания метаболизма лекарственных средств.

Шведские физиологи Э. Видмарк, Д. Тандберг (1924) и T. Теорелл (1937) применяли системы дифференциальных уравнений при анализе различных способов введения лекарственных средств.

Американский физиолог В. Гамильтон и другие (1931) использовали метод статистических моментов для оценки параметров фармакокинетики по экспериментальным данным.

Читайте также:  Как правильно написать состояние основных средств

Основы метаболизма лекарственных средств были заложены английскими биохимиками X. Бреем, В. Торпом и К. Уайтом (1951).

Практические аспекты применения фармакокинетики для оптимизации фармакотерапии разрабатывали К. Лапп во Франции (1948—1956), А. ван Гемерт и др. в Дании (1950), Э. Крюгер-Тиммер (1960) и, собственно фармакокинетику, — Дост (1953—1968) в Германии (последний — автор термина «фармакокинетика»).

Развитие фармакокинетики до начала 50-х гг. 20 в. сдерживалось отсутствием высокочувствительных и селективных методов анализа микроконцентраций лекарственных веществ в биологических средах и недостаточной компьютеризацией исследований. С решением этих проблем фармакокинетика получила дальнейшее развитие. В России развитие фармакокинетики началось в 60-х гг. и связано с именами В. А. Филова, В. H. Соловьёва и В. П. Яковлева.

Методы исследования

Фармакокинетика содействует решению проблемы эффективности и безопасности фармакотерапии путём исследования зависимости терапевтического, токсического и побочных эффектов лекарственных средств от их концентраций в месте действия или в анализируемой биологической среде (чаще всего в крови) и расчёту оптимальных режимов введения препаратов для создания и поддержания оптимальных концентраций лекарственных веществ.

Для определения микроконцентраций лекарственных веществ и продуктов их метаболизма используют хроматографию, спектральный, иммунохимический, радиоизотопный и другие методы.

Фармакокинетические процессы

Всасывание

Во всех случаях, когда лекарственное средство вводится не в сосудистое русло, оно попадает в кровь путём всасывания; в случае твёрдой формы сначала происходит растворение (высвобождение), а затем молекулы лекарственного вещества проникают в системный кровоток, чаще всего путём простой диффузии из места введения, а иногда с помощью активного транспорта. Так называемые пролонгированные (ретардированные) лекарственные формы обеспечивают медленное, контролируемое поступление лекарственного вещества в организм и его биодоступность.

При приёме внутрь лекарственного вещества основного характера (амины) всасываются обычно в тонком кишечнике (сублингвальные лекарственные формы всасываются из ротовой полости, ректальные — из прямой кишки), лекарственные вещества нейтрального или кислого характера начинают всасываться уже в желудке.

Всасывание характеризуется скоростью и степенью всасывания (так называемой биодоступностью). Степень всасывания — это количество лекарственного вещества (в процентах или в долях), которое попадает в кровь при различных способах введения. Скорость и степень всасывания зависит от лекарственной формы, а также от других факторов. При приёме внутрь многие лекарственные вещества в процессе всасывания под действием ферментов печени (или кислоты желудочного сока) биотрансформируются в метаболиты, в результате чего лишь часть лекарственных веществ достигает кровяного русла. Степень всасывания лекарственного вещества из желудочно-кишечного тракта, как правило, снижается при приёме лекарства после еды.

Распределение по органам и тканям

В организме лекарственное вещество распределяется между кровью, межклеточной жидкостью и клетками тканей. Распределение зависит от относительного сродства молекул лекарственного вещества к биомакромолекулам крови и тканей. Необходимое условие реализации фармакологического действия лекарственного вещества — его проникновение в ткани-мишени; напротив, попадание лекарственного вещества в индифферентные ткани снижает действующую концентрацию и может привести к нежелательным побочным эффектам (например, к канцерогенезу).

Для количественной оценки распределения дозу лекарственного вещества делят на его начальную концентрацию в крови (плазме, сыворотке), экстраполированную к моменту введения, или используют метод статистических моментов. Получают условную величину объёма распределения (объём жидкости, в котором нужно растворить дозу, чтобы получить концентрацию, равную кажущейся начальной концентрации). Для некоторых водорастворимых лекарственных веществ величина объёма распределения может принимать реальные значения, соответствующие объёму крови, внеклеточной жидкости или всей водной фазы организма. Для жирорастворимых лекарственных средств эти оценки могут превышать на 1-2 порядка реальный объём организма благодаря избирательной кумуляции лекарственного вещества жировыми и другими тканями.

Метаболизм

Лекарственные вещества выделяются из организма либо в неизмененном виде, либо в виде продуктов их биохимических превращений (метаболитов). При метаболизме наиболее распространены процессы окисления, восстановления, гидролиза, а также соединения с остатками глюкуроновой, серной, уксусной кислот, глутатионом. Метаболиты, как правило, более полярны и лучше растворимы в воде по сравнению с исходным лекарственным веществом, поэтому быстрее выводятся с мочой. Метаболизм может протекать спонтанно, но чаще всего катализируется ферментами (например, цитохромами), локализованными в мембранах клеток и клеточных органелл печени, почек, лёгких, кожи, мозга и других; некоторые ферменты локализованы в цитоплазме. Биологическое значение метаболических превращений — подготовка липорастворимых лекарственных средств к выведению из организма.

Экскреция

Лекарственные вещества выводятся из организма с мочой, калом, потом, слюной, молоком, с выдыхаемым воздухом. Выведение зависит от скорости доставки лекарственного вещества в выделительный орган с кровью и от активности собственно выделительных систем. Водорастворимые лекарственные вещества выводятся, как правило, через почки. Этот процесс определяется алгебраической суммой трёх основных процессов: гломерулярной (клубочковой) фильтрации, канальцевой секреции и реабсорбции. Скорость фильтрации прямо пропорциональна концентрации свободного лекарственного вещества в плазме крови; канальцевая секреция реализуется насыщаемыми транспортными системами в нефроне и характерна для некоторых органических анионов, катионов и амфотерных соединений; реабсорбции могут подвергаться нейтральные формы лекарственных веществ. Полярные лекарственные вещества с молекулярной массой более 300 выводятся преимущественно с желчью и далее с калом: скорость выведения прямо пропорциональна потоку желчи и отношению концентраций лекарственного вещества в крови и желчи.

Остальные пути выделения менее интенсивны, но могут быть исследованы при изучении фармакокинетики. В частности, нередко анализируют содержание лекарственного вещества в слюне, поскольку концентрация в слюне для многих препаратов пропорциональна их концентрации в крови, исследуют также концентрацию лекарственных веществ в грудном молоке, что важно для оценки безопасности грудного вскармливания.

Источник